(12)

United States Patent
Deshpande et al.

US009454455B2

US 9,454,455 B2
Sep. 27,2016

(10) Patent No.:
45) Date of Patent:

(54) METHOD FOR DERIVING INTELLIGENCE OTHER PUBLICATIONS
FROM ACTIVITY LOGS - . .
He, Goker, Harper, “Combining Evidence for Automatic Web
(75) TInventors: Prasad M. Deshpande, Mumbai (IN); ic;sslion Identifzz}tion”, Iréf)oorznation Processing and Management,
i i nternational Journa, .
Raghuram Krishnapuram, Bangalore Spiliopoulou et al., “A Framework for the Evaluation of Session
(IN); Debapriyo Majumdar, Bangalore Reconstruction Heuristics in Web Usage Analysis”, Informs Journal
(IN); Deepak S. Padmanabhan, Kerala on Computing, 2003.
(IN) Facca, Lanzi, “Mining Interesting _Knox_)vledge from Weblogs: A
Survey”, Data and Knowledge Engineering, 2003.
(73) Assignee: International Business Machines ?(r)llnszl’()()\?mglanms’ Web Mining for Web Personalization”,
Corporation, Armonk, NY (US) Queries and Judgments (source: http://www10.org/cdrom/papers/
317/node5.html).
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 * cited by examiner
US.C. 154(b) by 2089 days. Primary Examiner — Namitha Pillai
(21) Appl. No.: 12/111,325 Assistant Examiner — Sabrina Greene
(74) Attorney, Agent, or Firm — Ryan, Mason & Lewis,
(22) Filed: Apr. 29, 2008 LLP
(65) Prior Publication Data 57 ABSTRACT
US 2009/0271720 Al Oct. 29, 2009 Techniques for segregating one or more logs of at least one
multitasking user to derive at least one behavioral pattern of
(51) Imt. ClL the at least one multitasking user are provided. The tech-
GO6F 11/34 (2006.01) niques include obtaining at least one of at least one action
(52) U.S.CL log, configuration information, domain knowledge, at least
CPC ... GOG6F 11/3476 (2013.01); GO6F 11/3438 one task history and open task repository information,
(2013.01) correlating the at least one of at least one action log,
(58) Field of Classification Search configuration information, domain knowledge, at least one
USPC oo 715/789, 788, 781, 764 task history and open task repository information to deter-
See application file for complete search history. mine a task associated with each of one or more actions and
segregate the one or more logs based on the one or more
(56) References Cited actions, and using the one or more logs that have been
segregated to derive at least one behavioral pattern of the at
U.S. PATENT DOCUMENTS least one multitasking user. Techniques are also provided for
deriving intelligence from at least one activity log of at least
g:;g:g;(l) gé lggggg ?ﬁ??gie;ft al. one multitasking user to provide information to the at least
7,739,274 B2* 6/2010 Curtis et al.cccooernrr.n. 707/723 One user.
7,853,684 B2* 12/2010 Kochetal.c...c..... 709/224
2006/0085788 Al 4/2006 Amir et al. 11 Claims, 7 Drawing Sheets
402
OPEN TASKS
REPOSITORY 4% 4% 42
FEReNGe | PREDICTED ThSK | succrsion. [ee e OSE
404
ENGINE GENERATOR CURRENT UL
TASK ANNOTATED CONFIGURATION
USER SPECIFIC LOGS
L E—
CONFIGURATION
INFORMATION [~ 41
HISTORICAL
DATA

U.S. Patent Sep. 27, 2016 Sheet 1 of 7 US 9,454,455 B2

FIG. 1
ACTION a
T0 BE TAGGED
SMOOTHNESS
CONSTRAINTS
P 102
ACTION MERGED
————|PROCESSORF— RBUTION
CONTEXTUAL F 1
CONSTRAINTS
P2
DOMAIN KNOWLEDGE TASK BASED CONSTRAINTS
Py Py
FIG. 2
204 20
S
CERTAIN ACTIONS ACTION TASKS
WAR THE BEGIANG |~ ft3: 05, 12: 0.2, th: 0]
TS~ Ay ft3: 0.7, 12 0.2, t1: 0.1}
A, fth: 07, t2 0.3
As ft1: 05, t2: 0.5}
A ft1: 09, t2: 0.1}
As ft1: 05, t2: 0.5}
As fi1: 0.1, 12: 0.1, t4 03]
206 |
S
CERTAIN ACTIONS ARE CHAINED, IN WE CAN ESTIMATE THE
THAT THEY ARE SO LOGICALLY PROBABILITIES THAT AN

CONTINUOUS THAT THEY WOULD 208+ ACTION IS ASSOCIATED WITH
BELONG TO THE SAME TASK EACH OF THE OPEN TASKS

US 9,454,455 B2

Sheet 2 of 7

Sep. 27, 2016

U.S. Patent

N_m\‘ JOTITMONX NIVAOd

SI0T JLII3dS ﬁg

SN

0l¢

QILVIONNY XSYL SIsn

40SS3004d
NOLLJY

%
90¢

AYOLISOd3Y S9N
80¢ SYSVL N3dO

3Lvadn

<QI¥3Sn ‘NOLLIY>

& OIA

NOLLYOT1ddY

5
y0¢

~ 208

US 9,454,455 B2

Sheet 3 of 7

Sep. 27, 2016

U.S. Patent

0ly

V1va
TVIIHOLSIH
NOLLYWOANI
NOILLVANIIANGD

NOLLY¥NILINOD |
In INI®AND
NOLLYTddV YOLVYINID
n NOLLS399NS
S SNOLLSI99NS/SLNIH .
A% o0p

) ASVL Q3101034d

vy Old

SI0T IS ¥isSn
QILVIONNY XSYL

§
INONT [| "oy
NN | _
mwv AJOLISOdTY
SYSVL N3dO
§
AL

US 9,454,455 B2

Sheet 4 of 7

Sep. 27, 2016

U.S. Patent

V1vQ TvOI4OLSIH
NOLLYNYOANI
NOILV4NIIINOD

rd

)
706

‘moo. JI03dS

01S
$
¥INOISIQ TN
v | B))
TINCON
NOLLVANOLINOTY IN NI SISAVNY
NOLLYII1ddV dTIH @100 HOTHM SNYILLV 901
i QIININOIS
AL 1001
NOLLVANILINODRY |)
Avadn | 1 orLvwoLny
) S
805 908

G I1Ad

dsn

L

)
206G

U.S. Patent Sep. 27, 2016 Sheet 5 of 7 US 9,454,455 B2

FIG. 6

OBTAIN AT LEAST ONE OF AT LEAST ONE ACTION
LOG, CONFIGURATION INFORMATION, DOMAIN
KNOWLEDGE, AT LEAST ONE TASK HISTORY AND
OPEN TASK REPOSITORY INFORMATION

- 602

\J

CORRELATE THE AT LEAST ONE OF AT LEAST ONE
ACTION LOG, CONFIGURATION INFORMATION, DOMAIN
KNOWLEDGE, AT LEAST ONE TASK HISTORY AND
OPEN TASK REPOSITORY INFORMATION TO DETERMINE |~ 604
A TASK ASSOCIATED WITH EACH OF ONE OR MORE
ACTIONS AND SEGREGATE THE ONE OR MORE LOGS
BASED ON THE ONE OR MORE ACTIONS

\J

USE THE ONE OR MORE LOGS THAT HAVE BEEN
SEGREGATED TO DERIVE AT LEAST ONE BEHAVIORAL |~ 606
PATTERN OF THE AT LEAST ONE MULTITASKING USER

U.S. Patent Sep. 27, 2016 Sheet 6 of 7 US 9,454,455 B2

FIG. 7

OBTAIN INFORMATION ABOUT AT LEAST

ONE OF AT LEAST ONE PAST ACTION,

CONFIGURATION INFORMATION, DOMAIN
KNOWLEDGE AND AT LEAST ONE TASK HISTORY

-~ 702

\

CORRELATE THE INFORMATION ABOUT AT
LEAST ONE OF AT LEAST ONE PAST ACTION,
CONFIGURATION INFORMATION, DOMAIN
KNOWLEDGE AND AT LEAST ONE TASK HISTORY |~ 704
T0 DETERMINE A TASK ASSOCIATED WITH EACH
ACTION AND SEGMENT THE AT LEAST ONE
ACTIVITY LOG BASED ON ONE OR MORE ACTIONS

\

USE EACH SEGMENTED ACTIVITY LOG, CURRENT
CONFIGURATION OF AN APPLICATION, DOMAIN
KNOWLEDGE, CONFIGURATION INFORMATION AND |~ 706
ONE OR MORE ACTION HISTORIES TO PROVIDE
INFORMATION TO THE AT LEAST ONE USER

US 9,454,455 B2

T0/FROM

> COMPUTER
NETWORK

U.S. Patent Sep. 27, 2016 Sheet 7 of 7
FIG. 8
812
S
814
S
8024 PROCESSOR NEE‘}’?RK
810
§
MEDIA
8044 MEMORY U
l S
N) 816
| |
86~ DISPLAY |
]

MEDIA [~818

US 9,454,455 B2

1
METHOD FOR DERIVING INTELLIGENCE
FROM ACTIVITY LOGS

CROSS-REFERENCE TO RELATED
APPLICATION(S)

The present application is related to a commonly assigned
U.S. application entitled “System and Computer Program
Product for Deriving Intelligence from Activity Logs,”
identified by U.S. Ser. No. 12/111,356, and filed on even
date herewith, the disclosure of which is incorporated by
reference herein in its entirety.

FIELD OF THE INVENTION

The present invention generally relates to information
technology, and, more particularly, to activity logs.

BACKGROUND OF THE INVENTION

A system can be used for multiple tasks. An example may
be that of looking up a technical reference manual which has
a web interface to solve multiple problems at hand. The user,
in such a case and many other cases, does not specify the
specific task at hand for which he or she is using the system.
An example can include the scenario of a reference portal for
server system administration, wherein the system adminis-
trators have multiple problems to be solved at any given
point of time. They perform various actions on the portal to
solve these problems, and switch between problems very
often.

To assess the effectiveness of using the system, one can
advantageously do analytics on the usage logs to understand
what features in the system were used more and what
sequences of steps were done to effectively solve a problem.
To do any meaningful analysis, one would process the logs
to arrive at task-specific logs. However, the existing
approaches do not overcome these issues.

Challenges of log segregation include, for example, that
the logs are intertwined. Different people can work at the
same time, and/or each person can work on multiple tasks at
the same time. Also, no user gives explicit indication of the
task associated with each of his or her actions. Additionally,
in many instances, including service delivery, there is an
“open tasks repository” where one can get the list of open
tasks against a person at any given point of time. And as
stated above, task specific logs are required to do meaningful
analyses. Existing approaches, however, do not include task
specific log analysis or segregating intertwined logs.

Further, existing approaches do not include deriving
information about the user activity from logs even if there is
no explicit indication of the task associated with each action
s0 as to improve user experience by automatically changing
the user interface, and/or provide suggestions to the user
based on the current task being performed.

SUMMARY OF THE INVENTION

Principles of the present invention provide techniques for
deriving intelligence from activity logs.

An exemplary method (which may be computer-imple-
mented) for segregating one or more logs of at least one
multitasking user to derive at least one behavioral pattern of
the at least one multitasking user, according to one aspect of
the invention, can include steps of obtaining at least one of
at least one action log, configuration information, domain
knowledge, at least one task history and open task repository

15

20

30

35

40

45

50

55

60

2

information, correlating the at least one of at least one action
log, configuration information, domain knowledge, at least
one task history and open task repository information to
determine a task associated with each of one or more actions
and segregate the one or more logs based on the one or more
actions, and using the one or more logs that have been
segregated to derive at least one behavioral pattern of the at
least one multitasking user.

In an embodiment of the invention, an exemplary method
for deriving intelligence from at least one activity log of at
least one multitasking user to provide information to the at
least one user includes the following steps. Information
about at least one of at least one past action, configuration
information, domain knowledge and at least one task history
is obtained. The information about at least one of at least one
past action, configuration information, domain knowledge
and at least one task history are correlated to determine a
task associated with each action and segment the at least one
activity log based on one or more actions. Each segmented
activity log, current configuration of an application, domain
knowledge, configuration information and one or more
action histories is used to provide information to the at least
one user.

At least one embodiment of the invention can be imple-
mented in the form of a computer product including a
computer usable medium with computer usable program
code for performing the method steps indicated. Further-
more, at least one embodiment of the invention can be
implemented in the form of an apparatus including a
memory and at least one processor that is coupled to the
memory and operative to perform exemplary method steps.

These and other objects, features and advantages of the
present invention will become apparent from the following
detailed description of illustrative embodiments thereof,
which is to be read in connection with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram illustrating a log segregation
approach, according to an embodiment of the present inven-
tion;

FIG. 2 is a diagram illustrating a usage log with fuzzy
segregation, according to an embodiment of the present
invention;

FIG. 3 is a diagram illustrating a log segregation
approach, according to an embodiment of the present inven-
tion;

FIG. 4 is a diagram illustrating auto-suggestion in the user
interface (UI), according to an embodiment of the present
invention;

FIG. 5 is a diagram illustrating Ul redesign, according to
an embodiment of the present invention;

FIG. 6 is a flow diagram illustrating techniques for
segregating one or more logs of at least one multitasking
user to derive at least one behavioral pattern of the at least
one multitasking user, according to an embodiment of the
present invention;

FIG. 7 is a flow diagram illustrating techniques for
deriving intelligence from at least one activity log of at least
one multitasking user to provide information to the at least
one user, according to an embodiment of the present inven-
tion; and

FIG. 8 is a system diagram of an exemplary computer
system on which at least one embodiment of the present
invention can be implemented.

US 9,454,455 B2

3

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Principles of the present invention include deriving intel-
ligence from the activity logs of multitasking users. Also,
principles of the invention include segregating activity logs
by tasks to derive behavioral patterns of multitasking users.

Consider a system (computer system or an application)
which may be used by multiple users at any given time.
Actions performed by different users can be usually distin-
guished by the system. An objective may include, for
example, using the logs to learn about user behavior and
improve user experience by auto suggestions and optimizing
the user interface (UI), and/or get the logs from the system
and segregate them to per task logs.

However, a problem may exist in that each user may have
multiple tasks for which he or she may be using the system.
For example, one can be searching the web for resources to
do multiple assignments, and/or using a knowledge portal to
work on multiple problem tickets. Also, the set of tasks that
a user is working on currently can be available to the system
in a service delivery scenario (where tasks correspond to
tickets), and the user may not explicitly mention the task
associated with his or her present action. Additionally, the
logs can be intertwined, wherein different people work at the
same time, and each person works on multiple tasks at the
same time. Further, in many cases (including, for example,
service delivery), there can be an open tasks repository
where one can get the list of open tasks against a person at
any given point of time.

One or more embodiments of the present invention
include automatically segregating the logs on a per-task
basis. Implementation of the techniques described herein
can include, for example, coding up an action processor,
which aggregates the constraints and arrives at selection of
a task (fuzzy or otherwise) for each action on the portal.
Also, one or more embodiments of the invention provide
relevant information and/or suggestions to the user based on
the current task being performed, arrive at Ul reconfigura-
tion suggestions using such separated logs, and monitoring
user activity to, for example, ensure compliance to guide-
lines, detect suspicious deviations from regular behavior and
track the usage of use cases.

The techniques described herein separate the action logs
of multi-tasking users where there is no explicit indication of
the task associated with each action performed (using, for
example, action logs (that is, past actions), configuration
information, domain knowledge and/or task histories) to
task-specific logs. As noted above, such separated logs can
be used to, for example, for providing relevant information
and/or suggestions to the user based on the current task
being performed, as well as arriving at Ul reconfiguration
suggestions using such separated logs.

As described herein, one or more embodiments of the
invention include log segmentation by tasks. A typical usage
log can include information such as, for example, user name,
session, time, action performed (portlet, action, type),
parameters to the action, everything that is passed to the
action (for example, edit box values entered), duration of the
action, and preceding linked action, if any.

From these items, one can segment logs by user, session
and time (usually can be done easily because of explicit
indications), identify tasks the user might be working on at
that time, and associate each action with most likely task(s).
As such, one or more embodiments of the present invention
can include, for example, the usage of the information

25

40

45

55

4

gathered in the second noted step to accomplish associating
each action with most likely task(s).

Assume, for example, that a user does not switch tasks
very frequently. Because changing tasks requires a context
switch by the user, the user will prefer to finish a task before
shifting to the next one. Also, any task switch may be
associated with some action that may or may not be captured
in the log. When a new task is opened, the probability of the
user working on that task for the next few actions is very
high. Further, when a task is closed, the last few actions
before the task closure are likely to be related to the task that
got closed.

There can be certain constraints based on the Ul and
domain knowledge. For example, only a subset of actions
can be performed on any given Ul configuration. Also, for
instance, certain actions may be chained to the same tasks.
As an example, if a user submits a search query and clicks
on one of the results, it is highly likely that the search action
and the result click action are associated with the same task.

FIG. 1 is a diagram illustrating a log segregation
approach, according to an embodiment of the present inven-
tion. By way of illustration, FIG. 1 depicts an action
processor 102, as well as the elements described below. As
illustrated in FIG. 1, for an incoming action “a,” a specific
task is associated with this action. This tagging automati-
cally leads to log segregation, as the task-specific logs can
be obtained as the concatenation of all actions that are
tagged with the same task, actions ordered in time. One can
use a set of constraints to accomplish this segregation, as is
described below.

One or more embodiments of the present invention
include smoothness constraints. Users may not switch
between tasks very often. As such, smoothness constraints
can be based on the assumption that users stay with the same
task more frequently than switching. Thus, P1 (the compo-
nent parameterized by the smoothness constraints in FIG. 1)
would reflect the probability distribution of the preceding
action(s) so that this would bias the action processor to
assign the continuing task more than a new task.

Also, one or more embodiments of the invention include
contextual constraints. Users tend to work more on recently
opened tasks. As such, the probability of working on a task
is high immediately after it is opened and immediately
before it is closed. This is based on the assumption that
external events may influence the assignment of an action to
a task. For example, an external event signaling the arrival
of'a new task in the queue could pump up the probability that
the next action would be associated with the new arrived
task. If a new ticket has been opened, the probability of the
user working on that ticket is high. P, would reflect the
combination of the recency of the tickets and how soon the
ticket was closed after this action.

Further, the techniques described herein may include
domain knowledge. Domain knowledge can influence the
assignment of actions to tasks. An example would be to use
lexical similarity of the action (search query entered, etc.)
with the task detail to influence the probability of the action
to be assigned with that specific task. In this case, P3 would
reflect the similarity of the action parameters to the task
description. Additionally, one or more embodiments of the
invention can include task based constraints. Certain actions
are logically a follow-up of another action earlier in the
history as, for example, usage patterns suggest that some
action in history logically entails the next action, and/or the
output of an earlier action is the input to the present action.
Examples of task based constraints can include the follow-
ing. If A is most usually succeeded by B according to the

US 9,454,455 B2

5

logs, P4 for B would closely approximate the merged
distribution for A. Also, if the output of A feeds to B (such
as A being a search query, and B being the click on a result),
P4 for B would closely approximate the merged distribution
for A.

FIG. 2 is a diagram illustrating a usage log 202 with fuzzy
segregation, according to an embodiment of the present
invention. By way of illustration, FIG. 2 depicts element
204, which indicates that certain actions mark the beginning
of a new task. FIG. 2 also depicts element 206, which
indicates that certain actions are chained, in that they are so
logically continuous that they would belong to the same
task. Also, FIG. 2 depicts element 208, which indicates that
one can estimate the probabilities that an action is associated
with each of the open tasks.

The fuzzy segregation may be made crisp by selecting the
task which has the maximal probability. The action proces-
sor, to accomplish its task of log segregation, can use data
sources (in addition to the constraints) including, for
example, historical annotated logs, the repository of open
tasks at that given point of time, and domain knowledge.

A block diagram of where the action processor would fit
in, into a real system, can be, for example, as depicted in
FIG. 3. FIG. 3 is a diagram illustrating a log segregation
approach, according to an embodiment of the present inven-
tion. By way of illustration, FIG. 3 depicts the elements of
user(s) 302, an application 304, action processor 306, open
task repository 308, task annotated user specific logs 310,
and domain knowledge 312. As depicted in FIG. 3, one or
more users 302 can be using an application 304 at any given
time.

In one or more embodiments of the present invention, an
application feeds recent actions to the action processor. The
action processor can use domain knowledge and log histo-
ries to populate the probability distribution and other infor-
mation (links, effects, etc.), as well as update the logs with
the specific action.

For every action a to be logged, one can get the set of tasks
associated with the agent agent(a) as t={t1, t2, t3, . . . tn}
from the open tasks repository. Also, one can get a prob-
ability distribution P1 as the normalized distribution of
textual similarities over t. The similarity can be computed
with respect to the parameters of the action (for example,
from domain knowledge). A probability distribution P2 can
be obtained as the normalized weighted (decaying) average
of distributions over the last w actions restricted to the set of
tasks in t (for example, a smoothness constraint). Addition-
ally, one can get a probability distribution P3 of an action b
in history from which a link originates (if any), of which the
current action is the target (for example, a task based
constraint).

A distribution of recency of tasks opened in t as P4 (for
example, a context based constraint) can be obtained, as well
as a distribution of tasks closed after this action as P5 (for
example, a context based constraint). Further, one can pool
in the above distributions using linear or logarithmic opinion
pooling to find a final distribution P for a. Also, one can add
<a, P> to the log specific to agent(a).

FIG. 4 is a diagram illustrating auto-suggestion in the user
interface (UI), according to an embodiment of the present
invention. By way of illustration, FIG. 4 depicts the ele-
ments of open tasks repository 402, task annotated user
specific logs 404, interface engine 406, suggestion generator
408, configuration information historical data 410 and appli-
cation 412.

As depicted in FIG. 4, an inference engine 406 predicts
the task associated with the future action. One can get the set

10

15

20

25

30

35

40

45

50

55

60

65

6

of tasks associated with the agent a as t={t1, 12, 13, . . . tn}
from the open tasks repository 402. One can also get a
probability distribution P1 as the normalized weighted (de-
caying) average of distributions over the last w actions
restricted to the set of tasks in t performed by a. A distri-
bution of recency of tasks opened in t as P2 can additionally
be obtained. The above distributions can be pooled using
linear or logarithmic opinion pool to find a final distribution
P for a. If the confidence in the task with the highest
confidence is greater than [3, one can output that task to the
suggestion generator.

As also depicted in FIG. 4, a suggestion generator 408 can
use the current Ul configuration and the task f to generate
some suggestions for the user. One can get the set of actions
p that can be performed on the current configuration of the
Ul. For each action in p, a set of parameters can be
determined for the action which is relevant if the user is
working on the task f. One can pass these as suggestions to
the application 412 which would get displayed. Alterna-
tively, those actions can be initiated and the results may be
presented to the user. For example, if the user is working on
an “OS Scheduling” assignment and is on the search page,
the suggestion could be “search for OS Scheduling.” If the
user is working on an “OS Scheduling” assignment and is on
the course home page, the suggestion could be “go to
Assignments section.” If the user is working on a problem
ticket T which relates to server S, on the ticket details page,
one can suggest action “Show configuration of server S”.

FIG. 5 is a diagram illustrating Ul redesign, according to
an embodiment of the present invention. By way of illus-
tration, FIG. 5 depicts the elements of user specific logs 502,
configuration information historical data 504, segmented log
analysis module 506, automatic Ul reconfiguration tool 508,
UT designer 510 and application 512.

As illustrated in FIG. 5, one or more embodiments of the
invention include a segmented log analysis module 506 that
can be used to mine the segmented logs for suggestions on
UT reconfiguration. The suggestions could be arrived at, for
example, via mining of frequent long effective action
sequences, mining of frequent contiguous action patterns,
and/or finding default and/or common values for parameters
for various actions. Also, one or more embodiments of the
present invention include an automatic Ul reconfiguration
tool 508 that can use the patterns arrived at by the segmented
log analysis module 506 to reconfigure the Ul.

As described herein, one or more embodiments of the
invention include UI redesign using frequent long and
effective action sequences. Discovery of frequent long and
effective (FLE) action sequences can be used to mine the
logs for frequent long and effective sequences. One can use
frequent sequence mining algorithms to find a set of long
and frequent sequences. As an example, one can count only
sub sequences such that the number of other actions occur-
ring within that sequence is within a threshold. For example,
if the threshold is 2, one will count the sequence AB in
ACCB, but not in ACCCB as A and B have more than 2
tokens in between them in ACCCB. If the edit distance
between two sequences is small, one can consider them as
same and add their counts. For example, a sequence ABCDE
can be considered equivalent to ABCCE if the tolerance of
edit distance is set to 1. This will enable handling of noise
in the log.

One can assign an effectiveness score to each such
sequence using factors such as, for example, and average
completion time of a task using that sequence, average
quality of tasks when such a sequence is used. Quality can
be marks scored for an assignment task. Additionally, one

US 9,454,455 B2

7

can output the subset of sequences that have an effectiveness
score >1), where 1) is a threshold that is taken as a parameter.

In one or more embodiments of the invention, the Ul can
be reconfigured to drive the user towards using more of the
FLE sequences. At any given Ul configuration (such as a
tab), one can find the action that is performed most fre-
quently in FLE sequences on reaching that configuration and
highlight that action so that the user may be driven towards
performing that action. For example, the most common
action on reaching a “professor’s home page” may be to go
to the courses page.

Further, one or more embodiments of the present inven-
tion include placing automation buttons at places in the Ul
so that common frequent sequences of actions may be
performed at one shot. One can find very common contigu-
ous subsequences from FLE sequences using a variant of the
AprioriAll algorithm. The system designer can look at these
sequences and identifies candidates for automation. Auto-
mation of such sequences can be done, for example, by
placing batch execution buttons. For example, batch execu-
tion buttons can include “Click here to find all courses
related to ‘OS’ in US universities,” and “Click here to reboot
the server, start the email application and close the ticket.”
One can also change the layout so that some actions are not
required. For example, in a tabbed UI, changing tabs can be
eliminated by placing portlets that are accessed together in
the same tab.

As described herein, one or more embodiments of the
invention include UI redesign using frequently contiguous
action patterns. One can discover sequences of actions that
always tend to occur together by using a variant of frequent
sequence mining to arrive at sequences of actions that
always occur together.

Further, one or more embodiments of the present inven-
tion include Ul reconfiguration using contiguous action
patterns. One can, for example, redesign the Ul to allow for
easy and minimum effort execution of frequently contiguous
action patterns. For example, one can try to get to a situation
where most contiguous sequences can be completed on the
same tab of the Ul This can be done by maximizing the
“Easiness Score,” as described below.

Easiness Score=Zi(Frequency of {)*(Percentage of
actions in the same tab in 7),

where 1 is an action sequence. One can also use a greedy
algorithm to change the placement of portlets and/or buttons
on the Ul to maximize the easiness score.

Applications of log separation can include, for example,
the following. Log separation can be used to aid a user via
assistance by real-time task suggestions, automation of
sequences of actions, etc. Also, log separation can be used
to help the administrator (admin) aid the user via assistance
to the admin for interface variation to enable better and more
efficient usage. Additionally, log separation can be used to
aid the admin to understand the various procedures that
users use to solve various issues, and to monitor the devia-
tions in user behavior to detect suspicious user activity
and/or to document undocumented and efficient procedures.

FIG. 6 is a flow diagram illustrating techniques for
segregating one or more logs of at least one multitasking
user (for example, where there is no explicit indication of a
task associated with each action performed) to derive at least
one behavioral pattern of the at least one multitasking user,
according to an embodiment of the present invention. Step
602 includes obtaining at least one of at least one action log,
configuration information, domain knowledge, task histories
and open task repository information. In one or more

40

45

8

embodiments of the invention, the accuracy of the log
segregation improves as more information becomes avail-
able. Step 604 includes correlating the action logs, configu-
ration information, domain knowledge, task histories and
open task repository information to determine a task asso-
ciated with each of one or more actions and segregating the
logs based on the actions.

Step 606 includes using the logs that have been segre-
gated to derive at least one behavioral pattern of the multi-
tasking users. Segregating the logs can include, for example,
using constraints such as smoothness constraints, contextual
constraints, domain knowledge based constraints and task-
based constraints.

One or more embodiments of the invention include seg-
regating the logs of multitasking users on a per task basis.
Each log can include, for example, usage information, and
wherein the usage information comprises at least one of user
name, session, time, action performed, one or more param-
eters to an action, one or more items passed to an action,
duration of an action and one or more preceding linked
actions.

Also, the techniques depicted in FIG. 6 can include using
the logs that have been segregated to monitor user activity
(for example, to detect suspicious deviations from regular
behavior).

FIG. 7 is a flow diagram illustrating techniques for
deriving intelligence from at least one activity log of at least
one multitasking user to provide information to the at least
one user, according to an embodiment of the present inven-
tion. Step 702 includes obtaining information about at least
one of past actions, configuration information, domain
knowledge and task histories. In one or more embodiments
of the invention, the accuracy of the log segmentation
improves as more information becomes available. Step 704
includes correlating the information about at least one of
past actions, configuration information, domain knowledge
and task histories to determine a task associated with each
action and segment the activity logs based on actions. Step
706 includes using each segmented activity log, current
configuration of an application, domain knowledge, con-
figuration information and action histories to provide infor-
mation to the at least one user.

The techniques depicted in FIG. 7 can also include
reconfiguring a user interface (UI) using information gained
by mining one or more task-based segmented user logs,
and/or using at least one contiguous action pattern. Addi-
tionally, a Ul can be reconfigured to drive a user towards
using one or more frequent long and effective sequences.
Further, one or more embodiments of the invention include
placing automation buttons at a place in a Ul to facilitate
execution of a common frequent sequence of action.

Additionally, the techniques depicted in FIG. 7 can
include generating suggestions for the user based on a
current user interface (UI) configuration and a predicted
task, and displaying the suggestions in the Ul. One or more
embodiments of the invention can also include generating
suggestions for the user based on a current user interface
(UI) configuration and a predicted task, executing the sug-
gestions, and displaying the results in the UL

A variety of techniques, utilizing dedicated hardware,
general purpose processors, software, or a combination of
the foregoing may be employed to implement the present
invention. At least one embodiment of the invention can be
implemented in the form of a computer product including a
computer usable medium with computer usable program
code for performing the method steps indicated. Further-
more, at least one embodiment of the invention can be

US 9,454,455 B2

9

implemented in the form of an apparatus including a
memory and at least one processor that is coupled to the
memory and operative to perform exemplary method steps.

At present, it is believed that the preferred implementa-
tion will make substantial use of software running on a
general-purpose computer or workstation. With reference to
FIG. 8, such an implementation might employ, for example,
a processor 802, a memory 804, and an input and/or output
interface formed, for example, by a display 806 and a
keyboard 808. The term “processor” as used herein is
intended to include any processing device, such as, for
example, one that includes a CPU (central processing unit)
and/or other forms of processing circuitry. Further, the term
“processor” may refer to more than one individual processor.
The term “memory” is intended to include memory associ-
ated with a processor or CPU, such as, for example, RAM
(random access memory), ROM (read only memory), a fixed
memory device (for example, hard drive), a removable
memory device (for example, diskette), a flash memory and
the like. In addition, the phrase “input and/or output inter-
face” as used herein, is intended to include, for example, one
or more mechanisms for inputting data to the processing unit
(for example, mouse), and one or more mechanisms for
providing results associated with the processing unit (for
example, printer). The processor 802, memory 804, and
input and/or output interface such as display 806 and key-
board 808 can be interconnected, for example, via bus 810
as part of a data processing unit 812. Suitable interconnec-
tions, for example via bus 810, can also be provided to a
network interface 814, such as a network card, which can be
provided to interface with a computer network, and to a
media interface 816, such as a diskette or CD-ROM drive,
which can be provided to interface with media 818.

Accordingly, computer software including instructions or
code for performing the methodologies of the invention, as
described herein, may be stored in one or more of the
associated memory devices (for example, ROM, fixed or
removable memory) and, when ready to be utilized, loaded
in part or in whole (for example, into RAM) and executed
by a CPU. Such software could include, but is not limited to,
firmware, resident software, microcode, and the like.

Furthermore, the invention can take the form of a com-
puter program product accessible from a computer-usable or
computer-readable medium (for example, media 818) pro-
viding program code for use by or in connection with a
computer or any instruction execution system. For the
purposes of this description, a computer usable or computer
readable medium can be any apparatus for use by or in
connection with the instruction execution system, apparatus,
or device.

The medium can be an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system (or
apparatus or device) or a propagation medium. Examples of
a computer-readable medium include a semiconductor or
solid-state memory (for example, memory 804), magnetic
tape, a removable computer diskette (for example, media
818), a random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Current
examples of optical disks include compact disk-read only
memory (CD-ROM), compact disk-read and/or write (CD-
R/W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
802 coupled directly or indirectly to memory elements 804
through a system bus 810. The memory elements can
include local memory employed during actual execution of
the program code, bulk storage, and cache memories which

25

30

40

45

50

55

10

provide temporary storage of at least some program code in
order to reduce the number of times code must be retrieved
from bulk storage during execution.

Input and/or output or I/O devices (including but not
limited to keyboards 808, displays 806, pointing devices,
and the like) can be coupled to the system either directly
(such as via bus 810) or through intervening I/O controllers
(omitted for clarity).

Network adapters such as network interface 814 may also
be coupled to the system to enable the data processing
system to become coupled to other data processing systems
or remote printers or storage devices through intervening
private or public networks. Modems, cable modem and
Ethernet cards are just a few of the currently available types
of network adapters.

In any case, it should be understood that the components
illustrated herein may be implemented in various forms of
hardware, software, or combinations thereof, for example,
application specific integrated circuit(s) (ASICS), functional
circuitry, one or more appropriately programmed general
purpose digital computers with associated memory, and the
like. Given the teachings of the invention provided herein,
one of ordinary skill in the related art will be able to
contemplate other implementations of the components of the
invention.

At least one embodiment of the invention may provide
one or more beneficial effects, such as, for example, auto-
matically segregating logs on a per-task basis.

Although illustrative embodiments of the present inven-
tion have been described herein with reference to the accom-
panying drawings, it is to be understood that the invention
is not limited to those precise embodiments, and that various
other changes and modifications may be made by one skilled
in the art without departing from the scope or spirit of the
invention.

What is claimed is:

1. A method for segregating multiple action logs of at least
one multitasking user to derive at least one behavioral
pattern of the at least one multitasking user, comprising the
steps of:

obtaining multiple action logs for a user from multiple

web sites, configuration information, domain knowl-
edge, at least one task history and open task repository
information;

correlating the multiple action logs, configuration infor-

mation, domain knowledge, at least one task history
and open task repository information to determine a
task associated with each of one or more actions in the
multiple action logs, where there is no explicit indica-
tion of the task associated with each of the one or more
actions performed, wherein said correlating comprises:
associating each of one or more actions in the multiple
action logs with a task in the open task repository;
computing a confidence score for each task in the open
task repository associated with the one or more
actions, said computing comprising:
computing a first probability distribution for a set of
tasks associated with the user from the open task
repository as a normalized weighted average of
distributions over a pre-determined number of
previous actions restricted to the set of tasks
performed by the user;
computing a distribution of recency of tasks opened
in the set of tasks; and
combining the probability distribution and the dis-
tribution of recency of tasks to determine a second
probability distribution for the user; and

US 9,454,455 B2

11

identifying the task with the highest confidence score,
wherein the highest confidence score corresponds to
the task having the maximal probability in the sec-
ond probability distribution;

automatically segregating the multiple action logs of the

at least one multitasking user on a per-task basis based
on the identified task; and

using the multiple action logs that have been segregated

on a per-task basis to derive at least one behavioral
pattern of the at least one multitasking user and a
sequence of one or more additional actions based on the
identified task and the at least one behavioral pattern.

2. The method of claim 1, wherein each log comprises
usage information, and wherein the usage information com-
prises at least one of user name, session, time, action
performed, one or more parameters to an action, one or more
items passed to an action, duration of an action and one or
more preceding linked actions.

3. The method of claim 1, wherein segregating the one or
more logs comprises using at least one constraint, and
wherein the at least one constraint comprises at least one of
a smoothness constraint, a contextual constraint, a domain
knowledge based constraint and a task-based constraint.

4. The method of claim 1, further comprising using the
one or more logs that have been segregated to monitor user
activity.

5. A method for deriving intelligence from multiple activ-
ity logs of at least one multitasking user to provide infor-
mation to the at least one user, comprising the steps of:

obtaining information about at least one past action from

multiple action logs for a user, configuration informa-
tion, domain knowledge, at least one task history and
open task repository information;

correlating the information about the at least one past

action, configuration information, domain knowledge,
at least one task history and open task repository
information to determine a task associated with each
action where there is no explicit indication of the task
associated with each action performed, wherein said
correlating comprises:
associating each action from the multiple action logs
with a task in the open task repository;
computing a confidence score for each task in the open
task repository associated with each action, said
computing comprising:
computing a first probability distribution for a set of
tasks associated with the user from the open task
repository as a normalized weighted average of

10

20

25

30

40

45

12

distributions over a pre-determined number of
previous actions restricted to the set of tasks
performed by the user;

computing a distribution of recency of tasks opened
in the set of tasks; and

combining the probability distribution and the dis-
tribution of recency of tasks to determine a second
probability distribution for the user; and

identifying the task with the highest confidence score,

wherein the highest confidence score corresponds to

the task having the maximal probability in the sec-

ond probability distribution;

automatically segmenting the multiple activity logs of the

at least one multitasking user on a per-task basis based
on the identified task; and

using each segmented activity log, current configuration

of an application, domain knowledge, configuration
information and one or more action histories to provide
a sequence of one or more additional actions based on
the identified task to the user.

6. The method of claim 5, further comprising:

generating at least one suggestion for the at least one user

based on a current user interface (UI) configuration and
a predicted task; and

displaying the at least one suggestion in the UL

7. The method of claim 5, further comprising:

generating at least one suggestion for the at least one user

based on a current user interface (UI) configuration and
a predicted task;

executing the at least one suggestion; and

displaying a result in the UI.

8. The method of claim 5, further comprising reconfig-
uring a user interface (UI) using information gained by
mining one or more task-based segmented user logs.

9. The method of claim 5, further comprising reconfig-
uring a user interface (UI) to drive a user towards using one
or more frequent long and effective sequences.

10. The method of claim 5, further comprising placing at
least one automation button at a place in a user interface (UI)
to facilitate execution of a common frequent sequence of
action.

11. The method of claim 5, further comprising reconfig-
uring a user interface (UI) using at least one contiguous
action pattern.

